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Register Allocation and Coalescing
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•  Introduction
•  Abstraction and the Problem
•  Algorithm
•  Spilling
•  Coalescing

Reading: ALSU 8.8.4



Motivation

• Problem
– Allocation of variables (pseudo-registers) to 

hardware registers in a procedure

• A very important optimization!
– Directly reduces running time 

• (memory access ➔ register access)
– Useful for other optimizations

• e.g. CSE assumes old values are kept in registers.
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Goals

• Find an allocation for all pseudo-registers, if possible.

• If there are not enough registers in the machine, 
choose registers to spill to memory
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Register Assignment Example
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B = … 
  = A 
D = 
  = B + D

L1: C = … 
      = A
    D = 
      = C + D

            

A = …
IF A goto L1

• Find an assignment (no spilling) with only 2 registers
– A and D in one register, B and C in another one

• What assumptions?
– After assignment, no use of A & (and only one of B and C used)



An Abstraction for Allocation & Assignment

• Intuitively
– Two pseudo-registers interfere if at some point in the program 

they cannot both occupy the same register. 

• Interference graph: an undirected graph, where
– nodes = pseudo-registers
– there is an edge between two nodes if their corresponding 

pseudo-registers interfere

• What is not represented
– Extent of the interference between 
    uses of different variables
– Where in the program is the interference

6



Register Allocation and Coloring

• A graph is  n-colorable if:
– every node in the graph can be colored with one of the n colors 

such that two adjacent nodes do not have the same color.

• Assigning n register (without spilling) = Coloring with n colors
– assign a node to a register (color) such that no two adjacent nodes 

are assigned same registers (colors)

• Is spilling necessary? = Is the graph n-colorable?

• To determine if a graph is n-colorable is NP-complete, for n>2
– Too expensive 
– Heuristics

7



Algorithm

Step 1. Build an interference graph
a. refining notion of a node
b. finding the edges

Step 2. Coloring
– use heuristics to try to find an n-coloring

• Success:
– colorable and we have an assignment

• Failure:
– graph not colorable, or 
– graph is colorable, but it is too expensive to color
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Step 1a. Nodes in an Interference Graph
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B = … 
  = A 
D = 
  = B + D

L1: C = … 
      = A
    D = 
      = D + C

A = …
IF A goto L1

 A = 2     

   = A    



Live Ranges and Merged Live Ranges
• Motivation: to create an interference graph that is easier 

to color
– Eliminate interference in a variable’s “dead” zones.
– Increase flexibility in allocation: 

• can allocate same variable to different registers
• A live range consists of a definition and all the points in a 

program in which that definition is live. 
– How to compute a live range?

• Two overlapping live ranges for the same variable must be 
merged
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 a = …  a = … 

… = a 



Merge
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Example (Revisited)
A = ...  (A1)
IF A goto L1

L1:
C = ...  (C1)
    = A
D = ...  (D1) 

B = ...  (B1)
   = A
D = B  (D2) 

A = 2  (A2)

   = A
ret D

{} {}
{A} {A1}
{A} {A1}

{A} {A1}
{A,B} {A1,B1}
{B} {A1,B1}
{D} {A1,B1,D2}

Live Variables
Reaching Definitions

{A} {A1}
{A,C} {A1,C1}
{C} {A1,C1}
{D} {A1,C1,D1}

{D} {A1,B1,C1,D1,D2}
{A,D} {A2,B1,C1,D1,D2}

{A,D} {A2,B1,C1,D1,D2}
{D} {A2,B1,C1,D1,D2}



Merging Live Ranges

• Merging definitions into equivalence classes
– Start by putting each definition in a different equivalence 

class
– Then, for each point in a program:

• if (i) variable is live, and (ii) there are multiple reaching definitions 
for the variable, then:
– merge the equivalence classes of all such definitions into one equivalence 

class
• (Sound familiar?)

• From now on, refer to merged live ranges simply as 
live ranges
– merged live ranges are also known as “webs”
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SSA Revisited: What Happens to Φ 
Functions
• Now we see why it is unnecessary to “implement” 

a Φ function
– Φ functions and SSA variable renaming simply turn 

into merged live ranges
• When you encounter: X4 = Φ(X1, X2, X3)
– merge X1, X2, X3, and X4 into the same live range
– delete the Φ function

• Now you have effectively converted back out of 
SSA form
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Step 1b. Edges of Interference Graph

• Intuitively:
– Two live ranges (necessarily of different variables) 

may interfere if they overlap at some point in the 
program.

– Algorithm:
• At each point in the program:

– enter an edge for every pair of live ranges at that point.

• An optimized definition & algorithm for edges:
– Algorithm: 

• check for interference only at the start of each live range
– Faster
– Better quality
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Live Range Example 2
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 A = … L1: B = … 

IF Q goto L1

IF Q goto L2

L2: … = B
 

 … = A 



Step 2. Coloring

• Reminder: coloring for n > 2 is NP-complete

• Observations:
– a node with degree < n ⇒

• can always color it successfully, given its neighbors’ colors

– a node with degree = n ⇒ 
• can only color if at least two neighbors share same color

– a node with degree > n ⇒
• maybe, not always
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Coloring Algorithm
• Algorithm:

– Iterate until stuck or done
• Pick any node with degree < n
• Remove the node and its edges from the graph

– If done (no nodes left)
• reverse process and add colors

• Example (n = 3):

• Note: degree of a node may drop in iteration
• Avoids making arbitrary decisions that make coloring fail
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B

CE A

D



More details
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What Does Coloring Accomplish?

• Done: 
– colorable, also obtained an assignment

• Stuck: 
– colorable or not?  
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B

CE A

D



Extending Coloring: Design Principles
• A pseudo-register is 

– Colored successfully: allocated a hardware register
– Not colored: left in memory 

• Objective function
– Cost of an uncolored node:

• proportional to number of uses/definitions (dynamically)
• estimate by its loop nesting

– Objective: minimize sum of cost of uncolored nodes
• Heuristics

– Benefit of spilling a pseudo-register: 
• increases colorability of pseudo-registers it interferes with
• can approximate by its degree in interference graph

– Greedy heuristic
• spill the pseudo-register with lowest cost-to-benefit ratio, 

whenever spilling is necessary
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Spilling to Memory

• CISC architectures
– can operate on data in memory directly
– memory operations are slower than register operations

• RISC architectures

– machine instructions can only apply to registers
– Use

• must first load data from memory to a register before use
– Definition

• must first compute RHS in a register
• store to memory afterwards

– Even if spilled to memory, needs a register at time of 
use/definition
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Chaitin: Coloring and Spilling
• Identify spilling 

Build interference graph
Iterate until there are no nodes left

If there exists a node v with less than n neighbor
place v on stack to register allocate

else
v = node with highest degree-to-cost ratio
mark v as spilled

remove v and its edges from graph

• Spilling may require use of registers; change interference graph
While there is spilling
rebuild interference graph and perform step above

• Assign registers
While stack is not empty

Remove v from stack
Reinsert v and its edges into the graph
Assign v a color that differs from all its neighbors



Spilling

• What should we spill?
– Something that will eliminate a lot of interference 

edges
– Something that is used infrequently
– Maybe something that is live across a lot of calls?

• One Heuristic:
– spill cheapest live range (aka “web”)
– Cost = [(# defs & uses)*10loop-nest-depth]/degree
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Quality of Chaitin’s Algorithm
• Giving up too quickly

• N=2

• An optimization: “Prioritize the coloring”
– Still eliminate a node and its edges from graph
– Do not commit to “spilling” just yet
– Try to color again in assignment phase.
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Splitting Live Ranges
• Recall: Split pseudo-registers into live ranges to 

create an interference graph that is easier to color
– Eliminate interference in a variable’s “dead” zones.
– Increase flexibility in allocation:

• can allocate same variable to different registers
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IF A goto L1
A = ...

B = ... L1: C =...
 = A 
D 

= A
D = 

A = D

= A

A1

CB

D

A2

= B = C



Insight
• Split a live range into smaller regions (by paying a 

small cost) to create an interference graph that is 
easier to color
– Eliminate interference in a variable’s “nearly dead” 

zones.
• Cost: Memory loads and stores 

– Load and store at boundaries of regions with no activity
• # active live ranges at a program point can be > # registers

– Can allocate same variable to different registers
• Cost: Register operations

– a register copy between regions of different assignments
• # active live ranges cannot be > # registers
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Examples

Example 1:
FOR i = 0 TO 10

   FOR j = 0 TO 10000
A = A + ... 

(does not use B)
   FOR j = 0 TO 10000

B = B + ...
(does not use A)

Example 2: a = 

b = 
= a + b

c = 

= b+c

b = 

c = 
= a + c



Example 1
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Example 2
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Live Range Splitting

• When do we apply live range splitting? 

• Which live range to split?

• Where should the live range be split?

• How to apply live-range splitting with coloring?

– Advantage of coloring:
• defers arbitrary assignment decisions until later

– When coloring fails to proceed, may not need to split live range
• degree of a node >= n does not mean that the graph definitely is not 

colorable
– Interference graph does not capture positions of a live range
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One Algorithm

• Observation: spilling is absolutely necessary if 
– number of live ranges active at a program point > n 

• Apply live-range splitting before coloring
– Identify a point where number of live ranges > n
– For each live range active around that point:

• find the outermost “block construct” that does not access 
the variable

– Choose a live range with the largest inactive region
– Split the inactive region from the live range 
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Summary

• Problems:
– Given n registers in a machine, is spilling avoided?
– Find an assignment for all pseudo-registers, whenever possible.

• Solution:

– Abstraction: an interference graph
• nodes: live ranges
• edges: presence of live range at time of definition

– Register Allocation and Assignment problems 
• equivalent to n-colorability of interference graph

➔ NP-complete

– Heuristics to find an assignment for n colors
• successful: colorable, and finds assignment
• not successful: colorability unknown & no assignment
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Let’s Focus on Copy Instructions

• Optimizations that help optimize away copy instructions:
– Copy Propagation
– Dead Code Elimination

• Can all copy instructions be eliminated using this pair of 
optimizations?
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X = A + B;
…
Y = X;
…
Z = Y + 4;

X = A + B;
…
Y = X;
…
Z = X + 4;

1. Copy Propagation

2. Dead Code 
Elimination// deleted



Example Where Copy Propagation 
Fails

• Use of copy target has multiple (conflicting) 
reaching definitions
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X = A + B;
Y = C;

Y = X;

Z = Y + 4;



Another Example Where the Copy 
Instruction Remains

• Copy target (Y) still live even after some successful copy 
propagations

• Bottom line:
– copy instructions may still exist when we perform register allocation
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X = A + B;
Y = X;
Z = Y + 4;

Y = …;

C = Y + D;

Can substitute X for Y here

But not here



Copy Instructions and Register Allocation
• What clever thing might the register allocator do for copy instructions?

• If we can assign both the source and target of the copy to the same register:
– then we don’t need to perform the copy instruction at all!
– the copy instruction can be removed from the code

• even though the optimizer was unable to do this earlier

• One way to do this: 
– treat the copy source and target as the same node in the interference graph

• then the coloring algorithm will naturally assign them to the same register
– this is called “coalescing”
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…
Y = X;
…

…
r7 = r7;
…
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Simple Example: Without Coalescing

• Without coalescing, X and Y can end up in 
different registers
– cannot eliminate the copy instruction
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X = …;
A = 5;
Y = X;
B = A + 2;
Z = Y + B;
return Z;

X Y

Valid coloring with 3 registers

A ZA Z

X Y

B
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Example Revisited: With Coalescing

• With coalescing, X and Y are now guaranteed to end up in the 
same register
– the copy instruction can now be eliminated

• Great!  So should we go ahead and do this for every copy 
instruction?
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X = …;
A = 5;
Y = X;
B = A + 2;
Z = Y + B;
return Z;

X/Y

Valid coloring with 3 registers

A ZA Z

B

X/Y



Should We Coalesce X and Y In This 
Case?

• It is legal to coalesce X and Y for a “Y = X” copy instruction iff:
– initial definition of Y’s live range is this copy instruction, AND
– the live ranges of X and Y do not interfere otherwise

• But just because it is legal doesn’t mean that it is a good idea…
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X = A + B;
Y = X;

X = 2;

Z = Y + X;

No!  That would result 
in incorrect behavior if 
this branch is taken.



Why Coalescing May Be Undesirable

• What is the likely impact of coalescing X and Y on:
– live range size(s)?

• recall our discussion of live range splitting
– colorability of the interference graph?

• Fundamentally, coalescing adds further constraints to the coloring 
problem
– doesn’t make coloring easier; may make it more difficult

• If we coalesce in this case, we may:
– save a copy instruction, BUT
– cause significant spilling overhead if we can no longer color the graph
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X = A + B;
…
Y = X;
…
Z = Y + 4;

// 100 instructions

// 100 instructions



When to Coalesce
• Goal when coalescing is legal:

– coalesce unless it would make a colorable graph non-colorable

• The bad news:
– predicting colorability is tricky!

• it depends on the shape of the graph
• graph coloring is NP-hard

• Example: assuming 2 registers, should we coalesce X and Y?
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B

X/Y

A D

C

2-colorable

B

X Y

A D

CB

X Y

A D

C

Not 2-colorable

B C

???



Representing Coalescing Candidates in 
the Interference Graph
• To decide whether to coalesce, we augment the interference graph
• Coalescing candidates are represented by a new type of interference 

graph edge:
– dotted lines: coalescing candidates

• try to assign vertices the same color
– (unless that is problematic, in which case they can be given 

different colors)
– solid lines: interference

• vertices must be assigned different colors
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X = …;
A = 5;
Y = X;
B = A + 2;
Z = Y + B;
return Z;

X Y

A Z



How Do We Know When Coalescing 
Will Not Cause Spilling?
• Key insight:

– Recall from the coloring algorithm:
• we can always successfully N-color a node if its degree is < N

• To ensure that coalescing does not cause spilling:
– check that the degree < N invariant is still locally preserved after 

coalescing
• if so, then coalescing won’t cause the graph to become non-colorable

– no need to inspect the entire interference graph, or do trial-and-error

• Note:
– We do NOT need to determine whether the full graph is colorable or not
– Just need to check that coalescing does not cause a colorable graph to 

become non-colorable
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Simple and Safe Coalescing Algorithm
• We can safely coalesce nodes X and Y if (|X| + |Y|) < N

– Note: |X| = degree of node X counting interference (not coalescing) edges

• Example:

– if N >= 4, it would always be safe to coalesce these two nodes
• this cannot cause new spilling that would not have occurred with the original graph

– if N < 4, it is unclear

How can we (safely) be more aggressive than this?
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X Y (|X| + |Y|) = (1 + 2) = 3

X/Y Degree of coalesced node 
can be no larger than 3



What About This Example?
• Assume N = 3
• Is it safe to coalesce X and Y?

• Notice: X and Y share a common (interference) neighbor: node A
– hence the degree of the coalesced X/Y node is actually 2 (not 3)
– therefore coalescing X and Y is guaranteed to be safe when N = 3

• How can we adjust the algorithm to capture this?
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B

X Y

A Z

(|X| + |Y|) = (1 + 2) = 3
(Not less than N)



Another Helpful Insight

• Colors are not assigned until nodes are popped off 
the stack
– nodes with degree < N are pushed on the stack first
– when a node is popped off the stack, we know that it 

can be colored
• because the number of potentially conflicting neighbors 

must be < N
• Spilling only occurs if there is no node with degree 

< N to push on the stack

• Example: (N=2)
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Another Helpful Insight
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F

X Y
C

G

A
B

D
E

H

I
J |X| =  5

|Y| =  5

2-colorable after 
coalescing X and Y?



Building on This Insight
• When would coalescing cause the stack pushing (aka 

“simplification”) to get stuck?
1. coalesced node must have a degree >= N

• otherwise, it can be pushed on the stack, and we are not stuck
2. AND it must have at least N neighbors that each have a degree >= N

• otherwise, all neighbors with degree < N can be pushed before this node
– reducing this node’s degree below N (and therefore we aren’t stuck)

• To coalesce more aggressively (and safely), let’s exploit this second 
requirement
– which involves looking at the degree of a coalescing candidate’s 

neighbors
• not just the degree of the coalescing candidates themselves
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Briggs’s Algorithm 
• Nodes X and Y can be coalesced if:

– (number of neighbors of X/Y with degree >= N) < N
• Works because:

– all other neighbors can be pushed on the stack before this 
node,

– and then its degree is < N, so then it can be pushed
– Example: (N = 2)
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A Z
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Briggs’s Algorithm 

• Nodes X and Y can be coalesced if:
– (number of neighbors of X/Y with 
– degree >= N) < N

• More extreme example: (N = 2)

51

A

B

C

D

F

X Y
C

G

A
B

D
E

H

I
J E

F

G

H

I

J

X/Y



George’s Algorithm
Motivation:
• imagine that X has a very high degree, but Y has a much smaller degree

– (perhaps because X has a large live range)

• With Briggs’s algorithm, we would inspect all neighbors both X and Y
– but X has a lot of neighbors!

• Can we get away with just inspecting the neighbors of Y?
– showing that coalescing makes coloring no worse than it was given X?
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B

X



George’s Algorithm
• Coalescing X and Y does no harm if:

– foreach neighbor T of Y, either:
1.  degree of T is <N, or
2.  T interferes with X

• Example: (N=2)
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A

Y

B

X

← similar to Briggs: T will be pushed before X/Y

← hence no change compared with coloring X

A

B



Summary
• Coalescing can enable register allocation to eliminate copy 

instructions
– if both source and target of copy can be allocated to the same register

• However, coalescing must be applied with care to avoid causing 
register spilling

• Augment the interference graph:
– dotted lines for coalescing candidate edges
– try to allocate to same register, unless this may cause spilling

• Coalescing Algorithms:
– simply based upon degree of coalescing candidate nodes (X and Y)
– Briggs’s algorithm

• look at degree of neighboring nodes of X and Y
– George’s algorithm

• asymmetrical: look at neighbors of Y (degree and interference with X)
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